ACTEX IFM Study Manual
 April 2018 Edition

 Errata

 Errata
 Sept 30, 2018

M1-29, line -2 of Example 1.2.1: $R_{P}=52 \%$

M1-33, Example 1.2.2 Solution: (a) $\operatorname{Var}\left(R_{P}\right)=0.097669$, the volatility is 31.252%
(b) $\operatorname{Var}\left(R_{P}\right)=0.069873$, the volatility is 26.434%

M1-38 The first equality of $\mathrm{g}\left(c x_{1}, c x_{2}\right)$:

$$
\frac{1}{2}\left\{\ln c^{2}+\ln \left[x_{1}^{2} \operatorname{Var}\left(R_{1}\right)+2 x_{1} x_{2} \operatorname{Cov}\left(R_{1}, R_{2}\right)+x_{2}^{2} \operatorname{Var}\left(R_{2}\right)\right]\right\}
$$

M1-40 paragraph -3 line 3: each of the stocks in the market, ... each of the stocks in
M1-46 \#8: $1^{\text {st }}$ line: $20 \times 75=\underline{1500}, 2^{\text {nd }}$ line: would be $\underline{2200}$. He can then purchase $\underline{110}$ shares of B. $3^{\text {rd }}$ line onward:

$$
x_{A}=\frac{-1500}{700}=-\frac{15}{7}, x_{B}=\frac{2200}{700}=\frac{22}{7}
$$

The mean return is $-\frac{15}{7} \times 0.14+\frac{22}{7} \times 0.1=1.4286 \%$.
$\operatorname{Var}\left(R_{P}\right)=\left(-\frac{15}{7}\right)^{2} \times 0.3+2 \times\left(-\frac{15}{7} \times \frac{22}{7}\right) \times 0.12+\left(\frac{22}{7}\right)^{2} \times 0.15=1.242857$
The volatility is $1.242857^{0.5}=111.4835 \%$.
M1-61, the line preceding Q12: change to "... of firms 1 and 3, and 50% of firm 2."
M2-5 Example 2.1.3 line 2: Assuming that the firm has a debt beta of $\underline{0.01}$ and ...
M2-12 \#15 first line: change to "A firm has 30 million shares outstanding"
M2-13 \#3 last line: change to "Hence YTM = 4.585\%."
M2-15 \#15: $r_{\text {wacc }}=0.225-\frac{120}{120+20 \times 30} \times 0.07 \times 0.4=22.0 \%$
M3-2: the statement in the box: ... sell financial assets to customers ...
M3-25, Example 3.2.2: "(b) Suppose that you observe a 6-month prepaid forward price of 98..."

M3-39: \#1(b): The market prepaid forward price is too high.

M3-70: \#8 First paragraph: Option I would be exercised when the stock price hits the minimum over the 6 -month period. The minimum is 18 . So it is optimal to exercise the put during the first time period. The payoff is 2 .

M4-11: \#5 (ii): The payoff from the strangle...
M5-16 Ex 5.19 solution line 4: Since $a \sigma \sqrt{T} Z \sim \mathrm{~N}\left(0, a^{2} \sigma^{2} T\right)$, by (5.1.2) we have $\mathrm{E}\left[e^{a \sigma \sqrt{T} Z}\right]=e^{a^{2} \sigma^{2} T / 2}$. line 5: Change $e^{a \sigma^{2} T / 2}$ to $e^{a^{2} \sigma^{2} T / 2}$

M7-25 Ex 18 solution: $E=30, D=0, E^{*}=25, D^{*}=5, V=500 \times 15=7500$.
The amount in equity is $\frac{E}{E^{*}} \times V=\frac{30}{25} \times 7500=9000$.
The amount of debt is $7500-9000=-1500$.
So Phil should borrow $\$ 1500$ at 4% to purchase an additional 100 shares of Gogle's equity (which is worth 1500).

T1-6 \#12, for all choices, insert "synthetic" before the first "forward", and delete "synthetic" that appears before the second "forward".

T2-2 \#3 line 5: change 150 to 510 .
T3-14 \#28: change (iii) to " $u=e^{0.15}$ and $d=1 / u$ "

